Mutate an ir
object by adding new or replacing existing columns
Usage
mutate.ir(
.data,
...,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL
)
transmute.ir(.data, ...)
Arguments
- .data
An object of class
ir
.- ...
<
data-masking
> Name-value pairs. The name gives the name of the column in the output.The value can be:
A vector of length 1, which will be recycled to the correct length.
A vector the same length as the current group (or the whole data frame if ungrouped).
NULL
, to remove the column.A data frame or tibble, to create multiple columns in the output.
- .keep
Control which columns from
.data
are retained in the output. Grouping columns and columns created by...
are always kept."all"
retains all columns from.data
. This is the default."used"
retains only the columns used in...
to create new columns. This is useful for checking your work, as it displays inputs and outputs side-by-side."unused"
retains only the columns not used in...
to create new columns. This is useful if you generate new columns, but no longer need the columns used to generate them."none"
doesn't retain any extra columns from.data
. Only the grouping variables and columns created by...
are kept.
- .before, .after
<
tidy-select
> Optionally, control where new columns should appear (the default is to add to the right hand side). Seerelocate()
for more details.
Value
.data
with modified columns. If the spectra
column is dropped or
invalidated (see ir_new_ir()
), the ir
class is dropped, else the object
is of class ir
.
See also
Other tidyverse:
arrange.ir()
,
distinct.ir()
,
extract.ir()
,
filter-joins
,
filter.ir()
,
group_by
,
mutate-joins
,
nest
,
pivot_longer.ir()
,
pivot_wider.ir()
,
rename
,
rowwise.ir()
,
select.ir()
,
separate.ir()
,
separate_rows.ir()
,
slice
,
summarize
,
unite.ir()
Examples
## mutate
dplyr::mutate(ir_sample_data, hkl = klason_lignin + holocellulose)
#> # A tibble: 58 × 8
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> [1]
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.360
#> 2 2 GN 11-400 needles Cupressocyparis leylandii… 0.339
#> 3 3 GN 11-407 needles Juniperus chinensis Chine… 0.268
#> 4 4 GN 11-411 needles Metasequoia glyptostroboi… 0.350
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331
#> 6 6 GN 11-419 needles Pseudolarix amabili Golde… 0.279
#> 7 7 GN 11-422 needles Sequoia sempervirens Cali… 0.330
#> 8 8 GN 11-423 needles Taxodium distichum Cascad… 0.357
#> 9 9 GN 11-428 needles Thuja occidentalis Easter… 0.369
#> 10 10 GN 11-434 needles Tsuga caroliniana Carolin… 0.289
#> # … with 48 more rows, and 3 more variables: holocellulose [1],
#> # spectra <named list>, hkl [1]
## transmute
dplyr::transmute(ir_sample_data, hkl = klason_lignin + holocellulose)
#> # A tibble: 58 × 1
#> hkl
#> * [1]
#> 1 0.668
#> 2 0.589
#> 3 0.604
#> 4 0.534
#> 5 0.640
#> 6 0.615
#> 7 0.570
#> 8 0.482
#> 9 0.621
#> 10 0.638
#> # … with 48 more rows