Filtering joins for an ir
object
Arguments
- x
An object of class
ir
.- y
A data frame.
- by
A character vector of variables to join by.
If
NULL
, the default,*_join()
will perform a natural join, using all variables in common acrossx
andy
. A message lists the variables so that you can check they're correct; suppress the message by supplyingby
explicitly.To join by different variables on
x
andy
, use a named vector. For example,by = c("a" = "b")
will matchx$a
toy$b
.To join by multiple variables, use a vector with length > 1. For example,
by = c("a", "b")
will matchx$a
toy$a
andx$b
toy$b
. Use a named vector to match different variables inx
andy
. For example,by = c("a" = "b", "c" = "d")
will matchx$a
toy$b
andx$c
toy$d
.To perform a cross-join, generating all combinations of
x
andy
, useby = character()
.- copy
If
x
andy
are not from the same data source, andcopy
isTRUE
, theny
will be copied into the same src asx
. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.- ...
Other parameters passed onto methods.
- na_matches
Should
NA
andNaN
values match one another?The default,
"na"
, treats twoNA
orNaN
values as equal, like%in%
,match()
,merge()
.Use
"never"
to always treat twoNA
orNaN
values as different, like joins for database sources, similarly tomerge(incomparables = FALSE)
.
See also
Other tidyverse:
arrange.ir()
,
distinct.ir()
,
extract.ir()
,
filter.ir()
,
group_by
,
mutate-joins
,
mutate
,
nest
,
pivot_longer.ir()
,
pivot_wider.ir()
,
rename
,
rowwise.ir()
,
select.ir()
,
separate.ir()
,
separate_rows.ir()
,
slice
,
summarize
,
unite.ir()
Examples
## semi_join
set.seed(234)
dplyr::semi_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 5 × 7
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> <units>
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.359944
#> 2 2 GN 11-400 needles Cupressocyparis leylandii … 0.339405
#> 3 3 GN 11-407 needles Juniperus chinensis Chines… 0.267552
#> 4 4 GN 11-411 needles Metasequoia glyptostroboid… 0.350016
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331100
#> # … with 2 more variables: holocellulose <units>, spectra <named list>
## anti_join
set.seed(234)
dplyr::anti_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 53 × 7
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> <units>
#> 1 6 GN 11-419 needles Pseudolarix amabili Golde… 0.279360
#> 2 7 GN 11-422 needles Sequoia sempervirens Cali… 0.329672
#> 3 8 GN 11-423 needles Taxodium distichum Cascad… 0.356950
#> 4 9 GN 11-428 needles Thuja occidentalis Easter… 0.369360
#> 5 10 GN 11-434 needles Tsuga caroliniana Carolin… 0.289050
#> 6 11 GN 11-435 needles Picea abies Norway Spruce 0.288000
#> 7 12 GN 11-460 needles Pinus taeda Loblolly pine 0.322300
#> 8 13 HW 07-151 hardwood Quercus sp. Red oak (from… 0.238095
#> 9 14 HW 11-137 hardwood Acer saccharum Sugar maple 0.242592
#> 10 15 HW 11-144 hardwood Fraxinus americana White … 0.259224
#> # … with 43 more rows, and 2 more variables: holocellulose <units>,
#> # spectra <named list>