Mutating joins for an ir object
Usage
inner_join.ir(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
left_join.ir(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
right_join.ir(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
full_join.ir(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)Arguments
- x
An object of class
ir.- y
A data frame.
- by
A join specification created with
join_by(), or a character vector of variables to join by.If
NULL, the default,*_join()will perform a natural join, using all variables in common acrossxandy. A message lists the variables so that you can check they're correct; suppress the message by supplyingbyexplicitly.To join on different variables between
xandy, use ajoin_by()specification. For example,join_by(a == b)will matchx$atoy$b.To join by multiple variables, use a
join_by()specification with multiple expressions. For example,join_by(a == b, c == d)will matchx$atoy$bandx$ctoy$d. If the column names are the same betweenxandy, you can shorten this by listing only the variable names, likejoin_by(a, c).join_by()can also be used to perform inequality, rolling, and overlap joins. See the documentation at ?join_by for details on these types of joins.For simple equality joins, you can alternatively specify a character vector of variable names to join by. For example,
by = c("a", "b")joinsx$atoy$aandx$btoy$b. If variable names differ betweenxandy, use a named character vector likeby = c("x_a" = "y_a", "x_b" = "y_b").To perform a cross-join, generating all combinations of
xandy, seecross_join().- copy
If
xandyare not from the same data source, andcopyisTRUE, thenywill be copied into the same src asx. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.- suffix
If there are non-joined duplicate variables in
xandy, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.- ...
Other parameters passed onto methods.
- keep
Should the join keys from both
xandybe preserved in the output?If
NULL, the default, joins on equality retain only the keys fromx, while joins on inequality retain the keys from both inputs.If
TRUE, all keys from both inputs are retained.If
FALSE, only keys fromxare retained. For right and full joins, the data in key columns corresponding to rows that only exist inyare merged into the key columns fromx. Can't be used when joining on inequality conditions.
- na_matches
Should two
NAor twoNaNvalues match?
Value
x and y joined. If the spectra column is renamed, the ir
class is dropped. See mutate-joins.
See also
Other tidyverse:
arrange.ir(),
distinct.ir(),
extract.ir(),
filter-joins,
filter.ir(),
group_by,
mutate,
nest,
pivot_longer.ir(),
pivot_wider.ir(),
rename,
rowwise.ir(),
select.ir(),
separate.ir(),
separate_rows.ir(),
slice,
summarize,
unite.ir()
Examples
## inner_join
set.seed(234)
dplyr::inner_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 5 × 8
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> [1]
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.360
#> 2 2 GN 11-400 needles Cupressocyparis leylandii … 0.339
#> 3 3 GN 11-407 needles Juniperus chinensis Chines… 0.268
#> 4 4 GN 11-411 needles Metasequoia glyptostroboid… 0.350
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331
#> # ℹ 3 more variables: holocellulose [1], spectra <named list>,
#> # nitrogen_content <dbl>
## left_join
set.seed(234)
dplyr::left_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 58 × 8
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> [1]
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.360
#> 2 2 GN 11-400 needles Cupressocyparis leylandii… 0.339
#> 3 3 GN 11-407 needles Juniperus chinensis Chine… 0.268
#> 4 4 GN 11-411 needles Metasequoia glyptostroboi… 0.350
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331
#> 6 6 GN 11-419 needles Pseudolarix amabili Golde… 0.279
#> 7 7 GN 11-422 needles Sequoia sempervirens Cali… 0.330
#> 8 8 GN 11-423 needles Taxodium distichum Cascad… 0.357
#> 9 9 GN 11-428 needles Thuja occidentalis Easter… 0.369
#> 10 10 GN 11-434 needles Tsuga caroliniana Carolin… 0.289
#> # ℹ 48 more rows
#> # ℹ 3 more variables: holocellulose [1], spectra <named list>,
#> # nitrogen_content <dbl>
## right_join
set.seed(234)
dplyr::right_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 10 × 8
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> [1]
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.360
#> 2 2 GN 11-400 needles Cupressocyparis leylandii… 0.339
#> 3 3 GN 11-407 needles Juniperus chinensis Chine… 0.268
#> 4 4 GN 11-411 needles Metasequoia glyptostroboi… 0.350
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331
#> 6 101 NA NA NA NA
#> 7 102 NA NA NA NA
#> 8 103 NA NA NA NA
#> 9 104 NA NA NA NA
#> 10 105 NA NA NA NA
#> # ℹ 3 more variables: holocellulose [1], spectra <named list>,
#> # nitrogen_content <dbl>
## full_join
set.seed(234)
dplyr::full_join(
ir_sample_data,
tibble::tibble(
id_measurement = c(1:5, 101:105),
nitrogen_content = rbeta(n = 10, 0.2, 0.1)
),
by = "id_measurement"
)
#> # A tibble: 63 × 8
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> * <int> <chr> <chr> <chr> [1]
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.360
#> 2 2 GN 11-400 needles Cupressocyparis leylandii… 0.339
#> 3 3 GN 11-407 needles Juniperus chinensis Chine… 0.268
#> 4 4 GN 11-411 needles Metasequoia glyptostroboi… 0.350
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331
#> 6 6 GN 11-419 needles Pseudolarix amabili Golde… 0.279
#> 7 7 GN 11-422 needles Sequoia sempervirens Cali… 0.330
#> 8 8 GN 11-423 needles Taxodium distichum Cascad… 0.357
#> 9 9 GN 11-428 needles Thuja occidentalis Easter… 0.369
#> 10 10 GN 11-434 needles Tsuga caroliniana Carolin… 0.289
#> # ℹ 53 more rows
#> # ℹ 3 more variables: holocellulose [1], spectra <named list>,
#> # nitrogen_content <dbl>